Discussion of "Permutation-Based True Discovery Guarantee by Sum Tests"

by Anna Vesely, Livio Finos, Jelle J. Goeman

Pierre Neuvial

CNRS and Institut de Mathématiques de Toulouse (France)
2021-02-25

Features that I liked

- generic treatment of sum tests
- use of permutations to adapt to dependence
- generic formulation of the post hoc bound

$$
q(S)=\max \{z \in\{0, \ldots, s+1\}, \phi(z)=0\}
$$

- shortcut in near-linear time in the number of hypotheses (for a given S)
- beyond Simes-based post hoc inference
- a sum test after truncation is still a sum test!
- implementation (R package sumSome on github)

Comment: formulation of the post hoc bound

Closed testing

- $q(S)=\max _{Z \notin \mathcal{R}}|Z \cap S|$
- $\mathcal{Z}_{z}=\{Z \subseteq S:|Z| \geq z\}$
- $\phi(z)=1\left\{\mathcal{Z}_{z} \subseteq \mathcal{R}\right\}$

Local tests

- $q(S)=\max _{Z \notin \mathcal{R}_{\text {loc }}}|Z \cap S|$
- $\mathcal{V}_{z}=\{V \subseteq M:|V \cap S| \geq z\}$
- $\phi(z)=1\left\{\mathcal{V}_{z} \subseteq \mathcal{R}_{\text {loc }}\right\}$

Then

$$
q(S)=\max \{z \in\{0, \ldots, s+1\}, \phi(z)=0\} \quad(*)
$$

In practice $\phi(z)$ is calculated based on the local test formula.

- Genovese \& Wasserman, Ann. Stat., 2006
- Hemerik, Goeman \& Solari, Biometrika (2019)
- Blanchard, N. \& Roquain, Ann. Stat. (2020)
- Katsevich \& Ramdas, Ann. Stat. (2020)

Questions on the post hoc bound $q(S)$

| Q1. Do we really need closed testing here?
Very short proof for (*) using only local tests: call q^{\prime} the max on the right hand side. By definition of ϕ :

- $\phi\left(q^{\prime}\right)=0 \quad \Rightarrow \exists V:|V \cap S| \geq q^{\prime}, V \notin \mathcal{R}_{\text {loc }} \quad \Rightarrow q(S) \geq q^{\prime}$
- $\phi\left(q^{\prime}+1\right)=1 \Rightarrow \forall V:|V \cap S| \geq q^{\prime}+1, V \in \mathcal{R}_{\text {loc }} \Rightarrow q(S)<q^{\prime}+1$

Q2. The formula

$$
q(S)=\max \{z \in\{0, \ldots, s+1\}, \phi(z)=0\}
$$

is not specific to sum test. Can it be/has is been used to derive shortcuts for other local tests?

Question on the shortcuts

Worst case complexity of the single-step shortcut for a given S :

$$
O\left(B m \log ^{2}(m)\right)
$$

Iterated shortcut

Result: $d^{(n)}(S)=d(S)$ after at most $2^{m}-2$ steps (!).

- n governs both the tightness of the bound and the time complexity.

Q3. Can we characterize situations in which the single-step shortcut is exact, ie $q_{0}(S)=q(S)$?

- further assumptions on the test statistics?

Q4. Empirical study of which parameters influence n ?

- signal strength, proportion of non null items, number of tests...

Related works on permutation-based true discovery guarantees

Q5. How does the prosed bounds compare to other permutationbased post hoc bounds?

- Andreella, Hemerik, Weeda, Finos, \& Goeman, arxiv:2012.00368 (2020)
- Blanchard, N. \& Roquain Ann. Stat. (2020)
- Blanchard, N. \& Roquain, Book chapter for Handbook of multiple testing (to appear)

Recap of questions

\| Q1. Do we need closed testing here?

Q2. Could the expression

$$
q(S)=\max \{z \in\{0, \ldots, s+1\}, \phi(z)=0\}
$$

be useful beyond sum tests?
| Q3. Further assumptions leading to exact single-step shortcut?

Q4. Empirical study of which parameters influence n ?
| Q5. Comparison to other permutation-based post hoc bounds

